POST-QUANTUM CRYPTO: THE EMBEDDED CHALLENGE

Joost Renes **MARCH 2021**

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

POST-QUANTUM CRYPTO IS ON THE HORIZON

AUTOMOTIVE

INDUSTRIAL & IOT

MOBILE

COMMUNICATION INFRASTRUCTURE

70% connected cars by 2025

IoT Edge & end nodes from 6B units in 2021 to 12B units in 2025

Tagging **60B products** per year by 2025

Secure anchors & services for **40B processors**

What is the impact on the billions of embedded devices?

EMBEDDED USE CASES

Digital signatures (verification)

Secure boot

Mobile. Firmware integrity for payment terminals

Over-the-air updates

Automotive. Firmware authentication, smart car access

Key-Exchange

Secure element communication
lndustrial & loT. Communication within loT devices

Trust provisioning

Industrial & IoT. Communication by IoT devices

CLASSIC VS LATTICES IN PRACTICE (1/2)

- KEM finalists example excluding Classic McEliece (public key sizes range from 255 KiB to 1,326 KiB)
- Numbers from pqm4 library on Cortex-M4 [A]
- X25519 numbers from [B]

Note: Cortex-M4 is high-end for many embedded applications

- [A] Kannwischer, Rijneveld, Schwabe, Stoffelen. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. PQC standardization Conference, 2019.
- [B] Fujii, Aranha: Curve25519 for the Cortex-M4 and beyond. LatinCrypt 2017.

CLASSIC VS LATTICES IN PRACTICE (2/2)

- This ignores RAM / flash memory for key material
- Typical max. stack requirements:
 1k, 2k, 4k bytes → serious challenge

REUSING EXISTING COPROCESSORS

Grundzüge einer arithmetischen Theorie der algebraischen Grössen.

(Von L. Kronecker.)

(Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.)

- Idea [A]: Re-use contemporary coprocessors
- Can do better: Combine symbolic NTTs with Kronecker substitution in a smart way
- Reduces number of operations required on the coprocessor
- [A] Albrecht, Hanser, Hoeller, Pöppelmann, Virdia, Wallner: Implementing RLWE-based schemes using an RSA co-processor. TCHES 2019
- [B] Harvey. Faster polynomial multiplication via multipoint Kronecker substitution. J. Sym. Comp. 2009.
- [C] Bos, Renes and Vredendaal: Polynomial Multiplication with Contemporary Co-Processors: Beyond Kronecker, Schönhage-Strassen & Nussbaumer. Cryptology ePrint Archive, Report 2020/1303, IACR, 2020.

CONCLUSIONS

- Irrelevant if the quantum threat is real or not
 → Post-quantum crypto support is already being requested
- Standards are coming
- We didn't even talk about hardened implementations

Short term (2020) Stateful-hash signature schemes

Long term (2022/2024)

NIST standards → KEM, digital signatures

Possibly multiple winners per category

SECURE CONNECTIONS FOR A SMARTER WORLD