### Musings on the Future of Quantum Software



**University of Amsterdam** 

HARRY BUHRMAN 25 March 2021 Quantum Symposium



Centrum Wiskunde & Informatica Amsterdam













#### **Quantum Software**

- Quantum Software is fundamentally different from classical software:
  - Uses Superposition, interference, and entanglement
  - Not always possible to speed up computation
  - Much more effort needed to uncover the power of quantum devices
- 2015: Launch research center for quantum software

- 2017: Gravitation grant: Quantum Software Consortium
  - Amsterdam-Delft-Leiden, 18.8 M€









Research Center for Quantum Software

#### "Enabling the power of quantum computers"

SCIENCE



- 25 permanent faculty
- CWI-UvA
- 50 PhD/Postdocs
- CS, Physics, Math
- Coordinate Dutch QSC
- Write NL/EU research agenda
- Engage with industry



New theme: Quantum for Society & Business



# Which computational problems have quantum speed-up?

- Difficult and deep question!
  - No easy criterion exists or is expected to exist.

Roughly three categories of problems:

#### WARNING: Requires hypotheses

like SETH or  $P \neq NP$ 

#### 1. Exponential speedup

• Factoring, quantum chemistry simulations, etc.

#### 2. Polynomial speedup

• Backtrack, search, satisfiability solvers, etc.

#### 3. No speedup

- Really hard problems: counting # satisfiable assignments to a formula
- Really easy problems: edit distance, sorting, binary search

For many problems we don't (yet) know in which category they fall



### Quantum Advantage Classicification

**Computational Problems** 





### Quantum Advantage



### **Three Problems:**

- 1. Quantum Hardware is not perfect
  - Have noisy NISQ devices
  - New quantum algorithms
- 2. Worst case quantum advantage
  - Interested in true advantage
  - Quantum Heuristics
- 3. Asymptotic analysis
  - Complexity theory of finite inputs
  - Important for quantum supremacy

**Quantum Software 2.0** 

### **Problem1: Noisy Qubits**

- Qubits degrade over time (NISQ regime)
  - Limited number of steps possible ⇒ short time to run quantum computer
  - Readout is probabilistic ⇒ repeat computation and take average outcome
- Run quantum computer often for short periods use classical computation before, inbetween, and after. (Hybrid computation)
- Quantum Algorithms have to reflect this:
  - QAOA & VQE frameworks
  - Shallow quantum circuits: short quantum paralell time with quantum advantage
  - Note: Shor's algorithm can be computed by shallow-ish quantum circuits
  - Hamiltonian Programming: make optimal use of specific quantum hardware
- Not clear how well these really work in the NISQ setting!
- New ideas and techniques & fine tuning needed (both hardware & software)



### Problem 2: Worst Case vs Real Case

- Traditionally design algorithms with respect to worst case behaviour
- Best algorithm has good running time guarantee on all instances
- Quantum Advantage/Complexity is also measured in the worst case

# QUANTUM VERSUS CLASSICAL RUNNING TIMES



#### On instance 2

- Classical = Quantum
- Classifies as no advantage
- Instance 2 may never occur in practice!
- real case design & analysis needed.



### Quantum Heuristic Algorithms

Design quantum algorithms to optimize real case difference

# QUANTUM VERSUS CLASSICAL RUNNING TIMES



#### Instance 4 & 5

- Real occurring instances
- Heuristic quantum algo
- Quantuml advantage!
- Average/real case analysis



### Quantum Heuristics

- Hard to analyze quantum heuristic algorithms
  - We don't have a quantum computer to try them out!
  - Need to develop techniques to do this
- We need a theory to reason about (quantum) heuristics

#### Some examples:

- Quantum speed-ups of classical heuristic algorithms (like SAT solvers)
- Quantum advantage for pattern matching on average [Montanaro'15]



### Quantum Software 2.0

- Quantum Algorithms Designed to deal with NISQ devices
  - Generalize & improve QAOA & VQE algorithms
  - Develop new hybrid algorithms with short quantum running times
  - Develop shallow quantum circuits and show advantage
- Quantum Heuristic Algorithms
  - Optimize for real world instances
  - What are real world instances?
  - Develop tools to analyze quantum heuristic algorithms due to lack of good quantum hardware
- Combination of the two



# Quantum Feedback loops



### Feedback Loops

### Industry cycle

#### Hardware cycle

Hybrid Algorithms









Mathematicians

**Computer Scientists** 

Quantum algorithms, crypto & communication

**Software Engineers** 

Few-qubit versions

**Industry Applications** 

**Industrial Use Cases** 

**Mathematicians** 

Computer Scientists

Theoretical physics

**Engineers Experimental Physics** 

Quantum algorithms, crypto & communication

Few-qubit versions

Quantum hardware

#### Quantum Heuristics

- Different speeds!
- Independent
- Interaction
- Similar to classical

### Summary

- Quantum advantage 1.0 has three problems:
  - Analysis is on perfect quantum computers but we are in the NISQ regime
  - Analysis & algorithm design is for the worst-case but we care about real-case
  - Complexity theory: we rely on unproven hypotheses
- Quantum Software 2.0 (partially) addresses these problems
  - Develop hybrid algorithms that have short quantum running times
  - Develop quantum heuristics and investigate real-world instances/distribution
  - Complexity for finite inputs (not asymptotic)
- Feedback cycles
  - Close cooperation hardware & software (co-design)
  - Academia-Industry (real case instances & heuristics)



### Warning

- The field is overhyped with unrealistic claims:
  - "It will very soon change the way we do computing"
  - "It is a disruptive technology that is pervasive to everything"
- Lots of money and venture capital is poured into the field

#### Truth:

- Quantum Computing is still in its very early stages. Perhaps comparable to the 40's or 50's for classical computing
- We will not have useful quantum computers in the next 5-10 years
- The field is still very much in exploring/academic mode
- QC is very interesting and has potential but lets be realistic!





### Enabling the power of quantum computers

www.qusoft.org

